Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
Participating Media Presentation
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
Börcsök Barnabás
Participating Media Presentation
Commits
a71105ca
Commit
a71105ca
authored
3 years ago
by
bobarna
Browse files
Options
Downloads
Patches
Plain Diff
Overall structure of presentation in place
parent
2844f032
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
img/vre.pdf_tex
+1
-0
1 addition, 0 deletions
img/vre.pdf_tex
main.tex
+134
-28
134 additions, 28 deletions
main.tex
with
135 additions
and
28 deletions
img/vre.pdf_tex
+
1
−
0
View file @
a71105ca
...
...
@@ -63,6 +63,7 @@
\put(0.65544063,0.05592739){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\textbf{y}$\end{tabular}}}}%
\put(0.89989886,0.06335604){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\textbf{z}$\end{tabular}}}}%
\put(0.83253104,0.02463589){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}\footnotesize{surface}\end{tabular}}}}%
\put(0.89,0.13893127){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$L(\textbf{z}, \omega)$\end{tabular}}}}%
\put(0.58436628,0.13893127){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\sigma_s(\textbf{y})L_s(\textbf{y}, \omega)$\end{tabular}}}}%
\put(0.2562073,0.13897051){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\sigma_a(\textbf{y})L_e(\textbf{y}, \omega)$\end{tabular}}}}%
\end{picture}%
...
...
This diff is collapsed.
Click to expand it.
main.tex
+
134
−
28
View file @
a71105ca
...
...
@@ -46,6 +46,9 @@
\newcommand\by
[0]
{
\textbf
{
y
}}
\newcommand\bomega
[0]
{
\boldsymbol
{
\omega
}}
\usepackage
{
mathtools
}
\newcommand*\mystrut
[1]
{
\vrule
width0pt height0pt depth#1
\relax
}
\usepackage
{
import
}
\usepackage
{
xifthen
}
...
...
@@ -166,12 +169,29 @@
\begin{frame}
{
In-scattered radiance
}
\begin{figure}
[ht]
\centering
%
\scalebox{.
7
}{
\scalebox
{
.
6
}{
\input
{
img/in
_
scattering
_
illustration.tex
}
%
}
}
\end{figure}
$$
L
_
s
(
\bx
,
\bomega
)
=
\int
_{
S
^
2
}
f
_
p
(
\bomega
,
\bomega
'
)
L
_
i
(
\bx
,
\bomega
'
)
$$
L
_
s
(
\bx
,
\bomega
)
=
\int
_{
S
^
2
}
f
_
p
(
\bx
,
\bomega
,
\bomega
'
)
L
_
i
(
\bx
,
\bomega
'
)
d
\bomega
'
$$
\begin{columns}
[t, onlytextwidth]
\column
{
.20
\textwidth
}
Phase function
$
f
_
p
(
\bx
,
\bomega
,
\bomega
'
)
$
\\
\vspace
{
.3em
}
\scriptsize
{$
\approx
BSDF
$
\\
(in surface rendering)
}
\column
{
.79
\textwidth
}
\begin{itemize}
\item
scattering at point
$
\bx
$
, given incident (
$
\bomega
$
) and outgoing
(
$
\bomega
'
$
) directions
\item
$
\int
_{
S
^
2
}
f
_
p
=
1
$
\item
$
f
_
p
(
\theta
)
\big
|
_{
\theta
=
\measuredangle
(
\bomega
,
\bomega
'
)
}$
\item
$
f
_
p
(
\bx
,
\bomega
,
\bomega
'
)
=
1
/(
4
\pi
)
$
, if the medium is
\textit
{
isotropic
}
\\\hfill
(otherwise,
\textit
{
anisotropic
}
)
\end{itemize}
\end{columns}
\end{frame}
...
...
@@ -240,50 +260,90 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$
\textbf
{
Let's integrate it!
}
\end{frame}
\begin{frame}
{
Transmittance
}{
Integrating the loss of radiance
}
\begin{frame}
{
Integrating the loss of radiance
}
\begin{figure}
[ht]
\centering
\scalebox
{
.
7
}{
\scalebox
{
.
6
}{
\input
{
img/RTE
_
illustration.tex
}
}
\begin{align}
\begin{aligned}
L(
\bx
+
\nabla\bomega
,
\bomega
)
&
= L(
\bx
,
\bomega
)
-
\sigma
_
t(
\bx
)L(
\bx
,
\bomega
)
\nabla\bomega
\\
\frac
{
\nabla
L(
\bx
,
\bomega
)
}{
\nabla\bomega
}
&
=
-
\sigma
_
t(
\bx
)L(
\bx
,
\bomega
)
\\
\int
_{
L(x,
\omega
)
}^{
L(x+y
\omega
)
}
\frac
{
dL
}{
L
}
&
= -
\int
_
0
^
y
\sigma
(x+
\bomega
')d
\bomega
'
\\
ln(L(x+y
\omega
,
\omega
)) - ln(L(x,
\omega
)) = -
\int
_
0
^
y
\sigma
(x+
\bomega
')
% \vert\nabla\bomega\vert &= \\
L(
\bx
+
\nabla\bomega
,
\bomega
)
&
=
L(
\bx
,
\bomega
) -
\sigma
_
t(
\bx
)L(
\bx
,
\bomega
)
\nabla\bomega
\\
L(
\bx
+ dx)
&
=
L(
\bx
) - L(
\bx
)
\sigma
_
t(
\bx
)dx
\bigg
|
_{
dx=
\nabla\bomega
,
L(
\bx
)=L(
\bx
,
\bomega
)
}
\\
\frac
{
L(
\bx
+ dx) - L(
\bx
)
}{
dx
}
=
\Aboxed
{
\frac
{
dL(
\bx
)
}{
dx
}
&
=
-L(
\bx
)
\sigma
_
t(
\bx
)
}
\text
{
("exponential extinction")
}
\\
\int
_{
L(x)
}^{
L(x+S)
}
\frac
{
1
}{
L
}
dL
&
= -
\int
_
0
^
S
\sigma
_
t(
\bx
)dx
\\
ln(L(
\bx
+S)) - ln(L(
\bx
))
&
= -
\int
_
0
^
S
\sigma
_
t(
\bx
) dx
\end{aligned}
\end{align}
\end{figure}
\end{frame}
\begin{frame}
{
Transmittance
}{
The Beer-Lambert Law
}
\begin{figure}
[ht]
$$
\implies
L
(
\bx
+
S
)
=
L
(
\bx
)
e
^{
-
\int
_
0
^
S
\sigma
_
t
(
\bx
+
s
)
ds
}
$$
\end{figure}
Usually written as:
\\
\begin{columns}
[t, onlytextwidth]
\column
{
.49
\textwidth
}
$
e
^{
-
\int
_
0
^
y
\sigma
_
t
(
\bx
-
s
\bomega
)
ds
}
=
T
(
\bx
,
\by
)
$
\\
\textit
{
"transmittance coefficient"
}
$
T
(
\bx
,
\by
)
$
\\
net reduction factor between
$
\bx
$
and
$
\by
$
\\
due to absorption and
out-scattering
\column
{
.49
\textwidth
}
$
\int
_
0
^
y
\sigma
_
t
(
\bx
-
s
\bomega
)
ds
=
\tau
(
\bx
,
\by
)
$
\\
\textit
{
"optical thickness"
$
\tau
$}
\end{columns}
\vfill
$$
T
(
t
)
=
e
^{
-
\tau
(
t
)
}
=
e
^{
-
\int
_
0
^
t
\sigma
_
t
(
\bx
-
s
\bomega
)
ds
}
$$
\centering
over distance
$
t
$
\end{frame}
\begin{frame}
{
RTE -- Radiative Transfer Equation
}
{
The integral version
}
\vfill
\begin{figure}
[ht]
\centering
\scalebox
{
.7
}{
\input
{
img/RTE
_
illustration.tex
}
}
\end{figure}
%
\begin{figure}[ht]
%
\centering
%
\scalebox{.7}{
%
\input{img/RTE_illustration.tex}
%
}
%
\end{figure}
\vfill
\begin{equation}
L(
\bx
,
\bomega
) =
\int
_
0
^
\infty
%T(\bx, \by)
\underbrace
{
\mystrut
{
2ex
}
e
^{
-
\int
_
0
^
y
{
\sigma
_
t(
\bx
-s
\bomega
)
}
ds
}
}_{
\text
{
Transmittance
}
T(
\bx
,
\by
)
}
\Big
[
\sigma
_
s(
\by
)L
_
s(
\by
,
\bomega
) +
\sigma
_
a(
\by
)L
_
e(
\by
,
\bomega
)
\underbrace
{
\mystrut
{
2ex
}
\sigma
_
s(
\by
)L
_
s(
\by
,
\bomega
)
}_{
\text
{
in-scatter
}}
+
\underbrace
{
\mystrut
{
2ex
}
\sigma
_
a(
\by
)L
_
e(
\by
,
\bomega
)
}_{
\text
{
emission
}}
\Big
]
d
\by
\end{equation}
\vfill
\end{frame}
\begin{frame}
{
VRE -- The Volume Rendering Equation
}
\begin{frame}
{
VRE -- Volume Rendering Equation
}
\begin{figure}
[ht]
\centering
\incfig
{
vre
}
\label
{
fig:vre
}
\end{figure}
\begin{equation}
L(
\bx
,
\bomega
) =
\int
_{
0
}^{
z
}
T(
\bx
,
\by
)
...
...
@@ -294,16 +354,62 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$
+
T(
\bx
,
\textbf
{
z
}
)L(
\textbf
{
z
}
,
\bomega
)
\end{equation}
\end{frame}
\begin{frame}
{
Monte Carlo Integration
}
\begin{itemize}
\item
$
\int
f
(
x
)
dx
=
\int
\frac
{
f
(
x
)
}{
p
(
x
)
}
p
(
x
)
dx
=
E
_
N
\Big
[
\frac
{
f
(
x
)
}{
p
(
x
)
}
\Big
]
\approx
\frac
{
1
}{
N
}
\sum\limits
_{
i
=
1
}^
N
\frac
{
f
(
x
_
i
)
}{
p
(
x
_
i
)
}$
\item
Applied to the Volume Rendering Equation:
$$
\langle
L
(
\bx
,
\bomega
)
\rangle
=
\frac
{
T
(
\bx
,
\by
)
}{
p
(
y
)
}
\big
[
\sigma
_
a
(
\by
)
L
_
e
(
\by
,
\bomega
)
+
\sigma
_
s
(
\by
)
L
_
s
(
\by
,
\bomega
)
\big
]
+
T
(
\bx
,
\textbf
{
z
}
)
L
(
\textbf
{
z
}
,
\bomega
)
$$
\item
$
p
(
y
)
$
is the
$
PDF
$
of sampling point
$
y
$
$$
\implies
\sum\limits
_{
i
=
1
}^
N
\Big
(
\frac
{
T
(
\bx
,
\by
_
i
)
}{
p
(
y
_
i
)
}
\big
[
\sigma
_
a
(
\by
_
i
)
L
_
e
(
\by
_
i,
\bomega
)
+
\sigma
_
s
(
\by
_
i
)
L
_
s
(
\by
_
i,
\bomega
)
\big
]
\Big
)
+
T
(
\bx
,
\textbf
{
z
}
)
L
(
\textbf
{
z
}
,
\bomega
)
$$
\item
We need:
\begin{itemize}
\item
Sampling distances
\item
Estimating the transmittance
$
T
$
along a ray
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
{
The volume rendering equation
}
\begin{figure}
[ht]
\centering
\incfig
{
vre
}
\caption
{
The Volume Rendering Equation (VRE) visualized.
}
\label
{
fig:vre
}
\end{figure}
\begin{frame}
{
Ray Marching
}
\begin{columns}
\column
{
.49
\textwidth
}
$
\int
_
0
^
t
\sigma
_
t
(
\bx
-
s
\bomega
)
ds
=
\tau
(
t
)
$
\\
\textit
{
"optical thickness"
$
\tau
$}
\column
{
.49
\textwidth
}
$
T
(
\bx
,
\by
)
=
e
^{
-
\tau
(
t
)
}$
\end{columns}
\end{frame}
\begin{frame}
{
Delta Tracking
}
\end{frame}
\begin{frame}
{
Transmittance Estimation
}
\end{frame}
\begin{frame}
{
Acceleration Data Structures
}
\end{frame}
\maketitle
\end{document}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment