Skip to content
Snippets Groups Projects
Commit a71105ca authored by bobarna's avatar bobarna
Browse files

Overall structure of presentation in place

parent 2844f032
No related branches found
No related tags found
No related merge requests found
......@@ -63,6 +63,7 @@
\put(0.65544063,0.05592739){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\textbf{y}$\end{tabular}}}}%
\put(0.89989886,0.06335604){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\textbf{z}$\end{tabular}}}}%
\put(0.83253104,0.02463589){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}\footnotesize{surface}\end{tabular}}}}%
\put(0.89,0.13893127){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$L(\textbf{z}, \omega)$\end{tabular}}}}%
\put(0.58436628,0.13893127){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\sigma_s(\textbf{y})L_s(\textbf{y}, \omega)$\end{tabular}}}}%
\put(0.2562073,0.13897051){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\sigma_a(\textbf{y})L_e(\textbf{y}, \omega)$\end{tabular}}}}%
\end{picture}%
......
......@@ -46,6 +46,9 @@
\newcommand\by[0]{\textbf{y}}
\newcommand\bomega[0]{\boldsymbol{\omega}}
\usepackage{mathtools}
\newcommand*\mystrut[1]{\vrule width0pt height0pt depth#1\relax}
\usepackage{import}
\usepackage{xifthen}
......@@ -166,12 +169,29 @@
\begin{frame}{In-scattered radiance}
\begin{figure}[ht]
\centering
% \scalebox{.7}{
\scalebox{.6}{
\input{img/in_scattering_illustration.tex}
% }
}
\end{figure}
$$ L_s(\bx, \bomega) = \int_{S^2} f_p(\bomega, \bomega') L_i(\bx, \bomega')
$$ L_s(\bx, \bomega) = \int_{S^2} f_p(\bx, \bomega, \bomega') L_i(\bx, \bomega')
d\bomega' $$
\begin{columns}[t, onlytextwidth]
\column{.20\textwidth}
Phase function $f_p(\bx, \bomega, \bomega')$ \\
\vspace{.3em}
\scriptsize{$\approx BSDF$ \\(in surface rendering)}
\column{.79\textwidth}
\begin{itemize}
\item scattering at point $\bx$, given incident ($\bomega$) and outgoing
($\bomega'$) directions
\item $\int_{S^2} f_p = 1$
\item $f_p(\theta)\big|_{\theta = \measuredangle(\bomega, \bomega')}$
\item $f_p(\bx, \bomega, \bomega') = 1/(4\pi)$, if the medium is
\textit{isotropic}\\\hfill(otherwise, \textit{anisotropic})
\end{itemize}
\end{columns}
\end{frame}
......@@ -240,50 +260,90 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$
\textbf{Let's integrate it!}
\end{frame}
\begin{frame}{Transmittance}{Integrating the loss of radiance}
\begin{frame}{Integrating the loss of radiance}
\begin{figure}[ht]
\centering
\scalebox{.7}{
\scalebox{.6}{
\input{img/RTE_illustration.tex}
}
\begin{align}
\begin{aligned}
L(\bx + \nabla\bomega,\bomega) &= L(\bx,\bomega)
- \sigma_t(\bx)L(\bx,\bomega)\nabla\bomega \\
\frac{\nabla L(\bx,\bomega)}{\nabla\bomega} &=
- \sigma_t(\bx)L(\bx,\bomega) \\
\int_{L(x,\omega)}^{L(x+y\omega)} \frac{dL}{L} &= -\int_0^y
\sigma(x+\bomega')d\bomega'\\
ln(L(x+y\omega,\omega)) - ln(L(x,\omega)) = - \int_0^y \sigma(x+\bomega')
% \vert\nabla\bomega\vert &= \\
L(\bx + \nabla\bomega,\bomega) &=
L(\bx,\bomega) - \sigma_t(\bx)L(\bx,\bomega)\nabla\bomega \\
L(\bx + dx) &=
L(\bx) - L(\bx)\sigma_t(\bx)dx\bigg|_{dx=\nabla\bomega,
L(\bx)=L(\bx, \bomega)} \\
\frac{L(\bx + dx) - L(\bx)}{dx} = \Aboxed{\frac{dL(\bx)}{dx} &=
-L(\bx)\sigma_t(\bx)} \text{ ("exponential extinction")}\\
\int_{L(x)}^{L(x+S)} \frac{1}{L} dL &= -\int_0^S \sigma_t(\bx)dx\\
ln(L(\bx+S)) - ln(L(\bx)) &= - \int_0^S \sigma_t(\bx) dx
\end{aligned}
\end{align}
\end{figure}
\end{frame}
\begin{frame}{Transmittance}{The Beer-Lambert Law}
\begin{figure}[ht]
$$ \implies L(\bx + S) = L(\bx)e^{-\int_0^S \sigma_t(\bx+s)ds} $$
\end{figure}
Usually written as:\\
\begin{columns}[t, onlytextwidth]
\column{.49\textwidth}
$e^{-\int_0^y \sigma_t(\bx-s\bomega)ds} = T(\bx, \by)$
\\
\textit{"transmittance coefficient"} $T(\bx, \by)$\\
net reduction factor between $\bx$ and $\by$ \\due to absorption and
out-scattering
\column{.49\textwidth}
$\int_0^y \sigma_t(\bx-s\bomega)ds = \tau(\bx,\by)$\\
\textit{"optical thickness" $\tau$}
\end{columns}
\vfill
$$ T(t) = e^{-\tau(t)} = e^{-\int_0^t \sigma_t(\bx-s\bomega)ds} $$
\centering over distance $t$
\end{frame}
\begin{frame}{RTE -- Radiative Transfer Equation}
{The integral version}
\vfill
\begin{figure}[ht]
\centering
\scalebox{.7}{
\input{img/RTE_illustration.tex}
}
\end{figure}
% \begin{figure}[ht]
% \centering
% \scalebox{.7}{
% \input{img/RTE_illustration.tex}
% }
% \end{figure}
\vfill
\begin{equation}
L(\bx, \bomega) = \int_0^\infty
%T(\bx, \by)
\underbrace{\mystrut{2ex}
e^{-\int_0^y{\sigma_t(\bx-s\bomega)}ds}
}_{\text{Transmittance } T(\bx, \by)}
\Big[
\sigma_s(\by)L_s(\by, \bomega) + \sigma_a(\by)L_e(\by, \bomega)
\underbrace{\mystrut{2ex}
\sigma_s(\by)L_s(\by, \bomega)
}_{\text{in-scatter}}
+
\underbrace{\mystrut{2ex}
\sigma_a(\by)L_e(\by, \bomega)
}_{\text{emission}}
\Big]
d\by
\end{equation}
\vfill
\end{frame}
\begin{frame}{VRE -- The Volume Rendering Equation}
\begin{frame}{VRE -- Volume Rendering Equation}
\begin{figure}[ht]
\centering
\incfig{vre}
\label{fig:vre}
\end{figure}
\begin{equation}
L(\bx, \bomega) = \int_{0}^{z}
T(\bx, \by)
......@@ -294,16 +354,62 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$
+
T(\bx, \textbf{z})L(\textbf{z},\bomega)
\end{equation}
\end{frame}
\begin{frame}{Monte Carlo Integration}
\begin{itemize}
\item $\int f(x)dx = \int \frac{f(x)}{p(x)}p(x) dx
= E_N\Big[ \frac{f(x)}{p(x)} \Big]
\approx \frac{1}{N} \sum\limits_{i=1}^N \frac{f(x_i)}{p(x_i)}$
\item Applied to the Volume Rendering Equation:
$$\langle L(\bx, \bomega) \rangle =
\frac{T(\bx, \by)}{p(y)}
\big[
\sigma_a(\by)L_e(\by, \bomega) +
\sigma_s(\by)L_s(\by, \bomega)
\big]
+
T(\bx, \textbf{z})L(\textbf{z},\bomega)$$
\item $p(y)$ is the $PDF$ of sampling point $y$
$$\implies
\sum\limits_{i=1}^N \Big(
\frac{T(\bx, \by_i)}{p(y_i)}
\big[
\sigma_a(\by_i)L_e(\by_i, \bomega) +
\sigma_s(\by_i)L_s(\by_i, \bomega)
\big] \Big)
+
T(\bx, \textbf{z})L(\textbf{z},\bomega)
$$
\item We need:
\begin{itemize}
\item Sampling distances
\item Estimating the transmittance $T$ along a ray
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{The volume rendering equation}
\begin{figure}[ht]
\centering
\incfig{vre}
\caption{The Volume Rendering Equation (VRE) visualized.}
\label{fig:vre}
\end{figure}
\begin{frame}{Ray Marching}
\begin{columns}
\column{.49\textwidth}
$\int_0^t \sigma_t(\bx-s\bomega)ds = \tau(t)$\\
\textit{"optical thickness" $\tau$}
\column{.49\textwidth}
$T(\bx, \by) = e^{-\tau(t)}$
\end{columns}
\end{frame}
\begin{frame}{Delta Tracking}
\end{frame}
\begin{frame}{Transmittance Estimation}
\end{frame}
\begin{frame}{Acceleration Data Structures}
\end{frame}
\maketitle
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment