Skip to content
Snippets Groups Projects
Commit 8c382520 authored by bobarna's avatar bobarna
Browse files

Prepare for final presentation

parent 3ca7aa98
No related branches found
No related tags found
No related merge requests found
...@@ -60,6 +60,7 @@ ...@@ -60,6 +60,7 @@
\put(0.23576592,0.24879687){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\Delta s$\end{tabular}}}}% \put(0.23576592,0.24879687){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\Delta s$\end{tabular}}}}%
\put(0,0){\includegraphics[width=\unitlength,page=3]{ray-marching.pdf}}% \put(0,0){\includegraphics[width=\unitlength,page=3]{ray-marching.pdf}}%
\put(0.07170968,0.14867355){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$T_0 = 1.0$\end{tabular}}}}% \put(0.07170968,0.14867355){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$T_0 = 1.0$\end{tabular}}}}%
\put(0.28602403,0.01358111){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$T_{i+1} = T_i - \Delta s \cdot \sigma_t(\bm{x}_i) $\end{tabular}}}}% \put(0.28602403,0.01358111){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$T_{i}
= T_{i-1}\cdot e^{- \sigma_t(\bm{x}_i)\Delta s} $\end{tabular}}}}%
\end{picture}% \end{picture}%
\endgroup% \endgroup%
...@@ -249,8 +249,14 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$ ...@@ -249,8 +249,14 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$
\begin{equation} \begin{equation}
\label{eq:RTE} \label{eq:RTE}
(\bomega \nabla)L(\bx,\bomega) = (\bomega \nabla)L(\bx,\bomega) =
- \sigma_t(\bx)L(\bx,\bomega) \underbrace{ - \sigma_t(\bx)L(\bx,\bomega)}
+ \sigma_s(\bx)L_s(\bx,\bomega) + \sigma_a(\bx)L_e(\bx,\bomega) _{Extinction}
+
\underbrace{\sigma_s(\bx)L_s(\bx,\bomega)}
_{In-scattering}
+
\underbrace{\sigma_a(\bx)L_e(\bx,\bomega)}
_{Emission}
\end{equation} \end{equation}
\end{frame} \end{frame}
...@@ -266,8 +272,14 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$ ...@@ -266,8 +272,14 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$
\begin{equation} \begin{equation}
\label{eq:RTE} \label{eq:RTE}
(\bomega \nabla)L(\bx,\bomega) = (\bomega \nabla)L(\bx,\bomega) =
- \sigma_t(\bx)L(\bx,\bomega) \underbrace{ - \sigma_t(\bx)L(\bx,\bomega)}
+ \sigma_s(\bx)L_s(\bx,\bomega) + \sigma_a(\bx)L_e(\bx,\bomega) _{Extinction}
+
\underbrace{\sigma_s(\bx)L_s(\bx,\bomega)}
_{In-scattering}
+
\underbrace{\sigma_a(\bx)L_e(\bx,\bomega)}
_{Emission}
\end{equation} \end{equation}
\centering \centering
\vfill \vfill
...@@ -280,20 +292,32 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$ ...@@ -280,20 +292,32 @@ $$\sigma_a(\boldsymbol{x})L_e(\bx, \bomega)$$
\scalebox{.6}{ \scalebox{.6}{
\input{img/RTE_illustration.tex} \input{img/RTE_illustration.tex}
} }
% \begin{align}
% \begin{aligned}
% % \vert\nabla\bomega\vert &= \\
% L(\bx + \nabla\bomega,\bomega) &=
% L(\bx,\bomega) - \sigma_t(\bx)L(\bx,\bomega)\nabla\bomega \\
% L(\bx + dx) &=
% L(\bx) - L(\bx)\sigma_t(\bx)dx\bigg|_{dx=\nabla\bomega,
% L(\bx)=L(\bx, \bomega)} \\
% \frac{L(\bx + dx) - L(\bx)}{dx} = \Aboxed{\frac{dL(\bx)}{dx} &=
% -L(\bx)\sigma_t(\bx)} \text{ ("exponential extinction")}\\
% \int_{L(x)}^{L(x+S)} \frac{1}{L} dL &= -\int_0^S \sigma_t(\bx)dx\\
% ln(L(\bx+S)) - ln(L(\bx)) &= - \int_0^S \sigma_t(\bx) dx
% \end{aligned}
% \end{align}
\begin{align} \begin{align}
\begin{aligned} \begin{aligned}
% \vert\nabla\bomega\vert &= \\
L(\bx + \nabla\bomega,\bomega) &=
L(\bx,\bomega) - \sigma_t(\bx)L(\bx,\bomega)\nabla\bomega \\
L(\bx + dx) &= L(\bx + dx) &=
L(\bx) - L(\bx)\sigma_t(\bx)dx\bigg|_{dx=\nabla\bomega, L(\bx) - L(\bx)\sigma_t(\bx)dx\bigg|_{dx=\nabla\bomega,
L(\bx)=L(\bx, \bomega)} \\ L(\bx)=L(\bx, \bomega)} \\
\frac{L(\bx + dx) - L(\bx)}{dx} = \Aboxed{\frac{dL(\bx)}{dx} &= \Aboxed{\frac{dL(\bx)}{dx} &=
-L(\bx)\sigma_t(\bx)} \text{ ("exponential extinction")}\\ -L(\bx)\sigma_t(\bx)} \text{ ("exponential extinction")}\\
\int_{L(x)}^{L(x+S)} \frac{1}{L} dL &= -\int_0^S \sigma_t(\bx)dx\\ \int_{L(x)}^{L(x+S)} \frac{1}{L} dL &= -\int_0^S \sigma_t(\bx)dx\\
ln(L(\bx+S)) - ln(L(\bx)) &= - \int_0^S \sigma_t(\bx) dx ln(L(\bx+S)) - ln(L(\bx)) &= - \int_0^S \sigma_t(\bx) dx
\end{aligned} \end{aligned}
\end{align} \end{align}
\end{figure} \end{figure}
\end{frame} \end{frame}
...@@ -426,7 +450,7 @@ Perfectly importance sample with $t' = -ln(1-\zeta)/\sigma_t$ ...@@ -426,7 +450,7 @@ Perfectly importance sample with $t' = -ln(1-\zeta)/\sigma_t$
\end{equation} \end{equation}
\begin{equation} \begin{equation}
\sigma_a + \sigma_s = 1; \frac{\sigma_a + \sigma_s}{\sigma_t} = 1;
P_a = \frac{\sigma_a}{\sigma_t}; P_s = \frac{\sigma_a}{\sigma_t} P_a = \frac{\sigma_a}{\sigma_t}; P_s = \frac{\sigma_a}{\sigma_t}
\end{equation} \end{equation}
...@@ -462,8 +486,8 @@ Perfectly importance sample with $t' = -ln(1-\zeta)/\sigma_t$ ...@@ -462,8 +486,8 @@ Perfectly importance sample with $t' = -ln(1-\zeta)/\sigma_t$
\begin{equation} \begin{equation}
L(\bm{x}, \bm{\omega}) = \int_{t=0}^{d} p(t) L(\bm{x}, \bm{\omega}) = \int_{t=0}^{d} p(t)
\Big[ \frac{\sigma_a}{\sigma_t} L_e(\bm{x_t}, \omega) \Big[ P_a L_e(\bm{x_t}, \omega)
+ \frac{\sigma_s}{\sigma_t} L_s(\bm{x_t}, \bomega) + P_s L_s(\bm{x_t}, \bomega)
\Big]dt + L_d(\bm{x_d}, \bm{\omega}) \Big]dt + L_d(\bm{x_d}, \bm{\omega})
\end{equation} \end{equation}
\end{frame} \end{frame}
...@@ -482,15 +506,15 @@ Perfectly importance sample with $t' = -ln(1-\zeta)/\sigma_t$ ...@@ -482,15 +506,15 @@ Perfectly importance sample with $t' = -ln(1-\zeta)/\sigma_t$
T_{\bar\sigma}(\bm{x},\bm{y}) T_{\bar\sigma}(\bm{x},\bm{y})
\Big[ \Big[
\underbrace{\mystrut{2ex} \underbrace{\mystrut{2ex}
\sigma_s(\by)L_s(\by, \bomega) P_s(\by)L_s(\by, \bomega)
}_{\text{in-scatter}} }_{\text{in-scatter}}
+ +
\underbrace{\mystrut{2ex} \underbrace{\mystrut{2ex}
\sigma_a(\by)L_e(\by, \bomega) P_a(\by)L_e(\by, \bomega)
}_{\text{emission}} }_{\text{emission}}
+ +
\underbrace{\mystrut{2ex} \underbrace{\mystrut{2ex}
\sigma_n(\by)L(\by, \bomega) P_n(\by)L(\by, \bomega)
}_{\text{null-collision}} }_{\text{null-collision}}
\Big] \Big]
d\by d\by
...@@ -526,7 +550,61 @@ Perfectly importance sample with $t' = -ln(1-\zeta)/\sigma_t$ ...@@ -526,7 +550,61 @@ Perfectly importance sample with $t' = -ln(1-\zeta)/\sigma_t$
\item Data access usually dominates the render time \\ \item Data access usually dominates the render time \\
$\implies$ data structures are key for achieving good performance $\implies$ data structures are key for achieving good performance
\item Volume data can quickly grow into hundreds of gigabytes for production \item Volume data can quickly grow into hundreds of gigabytes for production
\begin{itemize}
\item For example, peak storage needed for a single shot of the
movie Soul was 80 TBs.
\end{itemize}
\end{itemize} \end{itemize}
\begin{figure}
\centering
\includegraphics[width=0.4\textwidth]{kd-tree-example.png}
\label{fig:kd-tree-example}
\caption{Heterogeneous volume with a spike in density results in high
$\bar\sigma$ everywhere. Using kd-trees lowers the number of evaluations
needed. \textit{Source: Production Volume Rendering SIGGRAPH 2017 Course by
Fong et. al.}}
\end{figure}
\end{frame}
\begin{frame}{Remaning challenges and open problems}
\begin{itemize}
\item Joint handling of surfaces and volumes
\begin{itemize}
\item Unifying the different techniques
\end{itemize}
\item Machine Learning
\begin{itemize}
\item Vast cost of data access and tracking particles
high-albedo volumes (resulting in lots of scattering) --
e.g. clouds
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Summary}
\begin{columns}[t, onlytextwidth]
\column{.49\textwidth}
\begin{itemize}
\item Problem statement and model of volume and light propagating
through it
\item Interaction between light ray and volume
\item Formula for getting the radiance $L(x, \bomega)$ to make it
applicable to usual ray tracing methods
\item Subtasks needed
\begin{itemize}
\item Distance sampling
\item Transmittance estimation
\end{itemize}
\item Optimization
\item Remaining challenges and open problems
\end{itemize}
\column{.49\textwidth}
\begin{figure}[ht]
\centering
\def\svgwidth{\columnwidth}
\import{./img/}{propagation-illustration.pdf_tex}
\end{figure}
\end{columns}
\end{frame} \end{frame}
\maketitle \maketitle
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment