Basics of

programming 3

Unit tests in Java: JUnit

" I
Unit tests

m Verification and validation has many levels
system tests
iIntegration tests
unit tests
etc

m [esting a single unit is unit test
units in OO are class and object

m Automatism and repeatability are important
regression tests

Basics of programming 3 © BME IIT, Goldschmidt Balazs

"
Unit testing

m Small part of the software is tested

Single class or method
Each and every non-trivial method

m [ests are independent
Tests are stateless

m Developer and tester should be different
persons

Basics of programming 3 © BME IIT, Goldschmidt Balazs

" I
Unit testing — classical approach

m Code review
Useful if rules are observed
Not enough

m Manual testing
Develop tester applications
Simple
Becomes unmaintainable with time

m [est are not organised
m Results are not coherent

Basics of programming 3 © BME IIT, Goldschmidt Balazs

" I
Unit testing — manual approach

m System.out.printin()
Continuous diagnostic messages
Simple
Code is full with printin-s
= how to turn off?
Output tends to be unreadable
Manual control is needed

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Unit testing — manual approach

m Debugger
IDE support for observing variables
Slow

Cumbersome for complex (multithreaded)
applications

Has to be done after each change
Still manual

Basics of programming 3 © BME IIT, Goldschmidt Balazs

"
Unit testing — frameworks

m XUnit for many languages and environments
CppUnit (C++)
unittest (python)
etc.

m JUnit

open source Java testing framework
available as a JAR file

tests are written in Java

IDE-s provide built-in support

m separate windows, perspectives, etc

Basics of programming 3 © BME IIT, Goldschmidt Balazs

"
JUnit features

m Assertions for testing expected results
standard result checks

m Test fixtures for sharing common test data
common functionality written once

m Test runners for running tests
automated testing
regression Is easy

Basics of programming 3 © BME IIT, Goldschmidt Balazs

"
JUnit example

m Simple integer implementation

- public class MyInt {

' private int value;

public MyInt(int avalue) {
value = avalue;

}

public void add(MyInt anInt) {
value += anInt.getvalue();
}

public 1nt getvalue() {
return value;

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Example test

m Simple test — naive
Create some objects — testing context, fixture
Send messages to those objects
Verify some assertions

. public class MyTest {
public static void main(String[] args) {
MyInt ml = new MyInt(5);
MyInt m2 = new MyInt(30); Initialization
Test run ml.add(m2);
, F7’1f (ml.getvalue() != 35)
5 System.out.println("sum failed");

1t (m2.getvalue() !'= 30) |
System.out.printin("m2 fai1ed"):T=F;;mck

__

Basics of programming 3 © BME IIT, Goldschmidt Balazs 10

Example Junit test

. public class MyIntTestl {
| MyInt ml, m2;

@Before

public void setup() {

ml = new MyInt(5); ﬁ o
m2 = new MyInt(30); Initialization

}

@Test

public void testAddInt() { % Check

Test run ml.add(m2);
asserteEquals("sum Test", 35, ml.getvalue());

§ asserteEquals("m2 Test", 30, m2.getvalue());
i }
1

__

Basics of programming 3 © BME IIT, Goldschmidt Balazs 11

" S
JUnit in Eclipse

m Java Build Path/Libraries/Add Library/Junit 4
[| Run AS/Junit TeSt & Java - junitl/test/qwert/MyIntTest1.java - Eclipse

File Edit Source Refackor Mavigate Search Project |
| T3+ [0 -~ | G

i N
% Package Explorer | /fu JUnit 53 = O
£l

Finished after 0,016 seconds =
ot BH| @ ¢ I
Funs: 1)1 B Errors: 0 B Failures: 0

queert. MyIntTestl [Runner: JUnit 4] (0,000 s)
“pi bestaddInt (0,000)

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Test method

m Constraints
Each test is implemented as a method
It takes no parameters and returns no value
Test methods must be public
Annotated by @Test

Test order is undefined but deterministic
m order not known, but always the same

Basics of programming 3 © BME IIT, Goldschmidt Balazs

13

Fixtures

m Intro
combine tests for a common set of objects
e.g. initialization, clean-up etc

tests don’t share the objects
m each test separately tests its own set of objects

common objects are instance variables

Basics of programming 3 © BME IIT, Goldschmidt Balazs

14

" SN
Fixtures 2

m [ypes
@Before

m called before each test: builds the context

@ATfter

m called after each test: tears down the context

@BeforeClass / @Afterclass

m called before first test / after last test
m for resource-intensive objects and initialization

Basics of programming 3 © BME IIT, Goldschmidt Balazs

15

Fixtures and tests

m Execution order for two tests:

@BeforeClass methods
@Before methods
@ Test method #1
@After methods
@Before methods
@ Test method #2
@After methods
@ATfterClass methods

Basics of programming 3 © BME IIT, Goldschmidt Balazs

16

Testing results

m How to check if result is correc

msg is printed
when fail

|

static void assertTrue([String msg,] boolean condition)
static void assertFalse([String msg,] boolean condition)

static void assertNull([String msg,] Object object)
static void assertNotNull([String msg,] Object object)

static void assertSame([String msg,] Object exp, Object act)

stq{’sic void assertNotSame([String msg,] Object unexp, Object
ac

static void assertEquals([String msg,] X exp, X act)
static void assertArrayEquals([String msg,] X exp, X act)

static void fail([String msq])

Basics of programming 3 © BME IIT, Goldschmidt Balazs 17

" S
Running tests

@ Command line

java org.junit.runner.JunitCore TestClassl
[...other test classes...]

m |nside application

org.junit.runner.JunitCore.
runClasses(TestClassl.class, ...);

m [nside IDE

click on run tests...

Basics of programming 3 © BME IIT, Goldschmidt Balazs

18

" BN
Test results

m Success
OK
m Failure
result is different from expected
tests fail if any assertion fails
m Error
unexpected exception was thrown

m Ignore
test was ignored (assume or @Ignore)

Basics of programming 3 © BME IIT, Goldschmidt Balazs

19

" I
Test results 2

m Expecting exceptions
@Test(expected=NumberFormatException.class)

m Setting timeout
@Test(timeut=100)

m Ignoring test
@Ignore("some message') @Test ...

using assumeXXX method changes fails into ignores
m assertNotNull(obj) — assumeNotNull(obj)

Basics of programming 3 © BME IIT, Goldschmidt Balazs 20

B
Rules

m Same init for different test classes

put code into subclass of ExternalResource
m public void before(). runs before each test
m public void after(): runs after each test
m newly constructed for each test

add resource class to test
@Rule public ExternalResource resource
new MyExternalResource();

class level rules (like BeforeClass, etc)
@classrule ...

Basics of programming 3 © BME IIT, Goldschmidt Balazs

21

"
Subclassing test classes

m [est execution for subclass tests
bottom-up in inheritance hierarchy

m Before execution
top-down in inheritance hierarchy

m After execution
bottom-up in inheritance hierarchy

Basics of programming 3 © BME IIT, Goldschmidt Balazs

22

" S
Parameterized testing

m For same test with different parameters

instances are created for the cross-product of the test
methods and the test data elements

. @Runwith(value = Parameterized.class)

. public class ParamTest {

| private int a, b;

public ParamTest(int al, int bl) {a = al; b = bl;}

@Parameters public static Collection<Object[]> data() {
return Arrays.asList(new Object[][]1{{1,5},{4,9},{2,7}});

¥
@Test public void runTest() {Assert.assertTrue(a < b);}

Basics of programming 3 © BME IIT, Goldschmidt Balazs 23

" I
Creating test suites

m Grouping tests together

. @QRunwith (Suite.class)

. @Suite.SuiteClasses ({

i TestFeatureLogin.class,
TestFeatureLogout.class,

| TestFeatureNavigate.class,

§ TestFeatureUpdate.class

D

. public class FeatureTestSuite {

' // empty class holding the annotations

Basics of programming 3 © BME IIT, Goldschmidt Balazs 24

"
Categories of tests

m [ests can be annotated with categories
m Categories are simple annotations

m [ests can be category-annotated both on
method and class level

@Category(categoryTypel.class)

@Category({categoryTypel.class,
categoryType2.class})

Basics of programming 3 © BME IIT, Goldschmidt Balazs

25

Category example

- public interface FastTests{}
. public interface SlowTests {}

category markers]

N

E public class A {
. @Test public void a() { ... }

@Category(SlowTests.class)
@Test public void b() { ... }

E @Category({SlowTests.class, FastTests.class})
. public class B {
@Test public void c(OO { ... }

Basics of programming 3 © BME IIT, Goldschmidt Balazs 26

" I
Categories used Iin suites

In test suites one can select a set of categories

. @Runwith(Categories.class)

E @IncludeCategory(SlowTests.class)

. @excludecCategory(FastTests.class)

E @SuiteClasses({ A.class, B.class })

- public class SlowTestSuite {

' // Will run only test annotated

// with S/owTests 1n test cases A and B

Basics of programming 3 © BME IIT, Goldschmidt Balazs

27

JUnit conventions

m Separate tests from sources

Usually separare directories (src vs. test)
Final application doesn’t contain tests

m [est classes in same package as tested classes
Allows tests to access package, protected members

m For each tested class a single test class
Not a strict rule ©

Basics of programming 3 © BME IIT, Goldschmidt Balazs 28

Concurrent testing

m Testing concurrent classes is hard

help: ConcurrentUnit
1. Create a Waiter
2. Use Waiter.await to block the main test thread.

3. Use the Waiter.assert calls from any thread to perform
assertions.

4. Once expected assertions are completed, use
Waiter.resume call to unblock the main thread.

Basics of programming 3 © BME IIT, Goldschmidt Balazs 29

Test coverage

m How much of the code is tested?
coverage = tested / total

X<y?
including exceptions —L
static vs dynamic check A B

m are all paths tested? — '

m Goal: 100% coverage P<q?

bugs might still remain ® ———

Basics of programming 3 © BME IIT, Goldschmidt Balazs 30

