
Basics of

programming 3programming 3

Java and UML

� Requirements

� goal: defining what is expected

� Analysis

� goal: understanding problem domain

Steps of SW development

� goal: understanding problem domain

� Design

� goal: closing on implementation decisions

� Implementation

� goal: creating formal, machine language description

� Testing

� goal: assessing adherence to requirements
Basics of programming 3 © BME IIT, Goldschmidt Balázs 2

� Analysis

� focus on responsibilities and interactions

� public method are defined

� attributes (if any) only specify responsibility

Models in SW development

� Design

� focus on internal structures

� protected, package, private members

� high-level structures (e.g. list, set) concretized

� Implementation

� programming language constraints considered

� implementation decisions only

Basics of programming 3 © BME IIT, Goldschmidt Balázs 3

� High level description

� details are neglected on purpose

� essence of good modelling: what is relevant?

� flexibility and universality are important

Modelling

� flexibility and universality are important

� must maintain abstraction level

� don’t dive into details

� knowing capabilities is still a must

� Formal language is needed

� to understand each other

� to understand past self

Basics of programming 3 © BME IIT, Goldschmidt Balázs 4

� Objects and classes

� static and dynamic views

� class level and object level views

OO concepts in modelling

� Types (“dumb objects”)

� primitive and complex

� abstraction is needed

� Associations and Inheritance

� connections have abstraction level too

Basics of programming 3 © BME IIT, Goldschmidt Balázs 5

� Static view

� all or relevant components and their relationships

� describes all kinds of connections

temporary connection (dependency)

Static and dynamic views

� temporary connection (dependency)

� constant (association, aggregation, inheritance, etc)

� instance or class level

� Dynamic view

� temporal behaviour of components

� Views are related

� must be consistent

Basics of programming 3 © BME IIT, Goldschmidt Balázs 6

� Abstract types

� name

� address

Modelling attributes (types)

� Java types

� String name

� class Address

� int age
� age

� coordinates

� …

Basics of programming 3 © BME IIT, Goldschmidt Balázs 7

� class Coord

� C++ types

� char* (string) name

� struct (class) address

� int age

� struct coord

� Keep abstraction level high

�e.g. use coordinates as type, not class

� Hide attributes

Modelling attributes (types)

� Hide attributes

�private or protected

�use getter/setter methods for access

� enables additional behaviour

� Type representation should be shy

�should only consider internal consistency

Basics of programming 3 © BME IIT, Goldschmidt Balázs 8

� Similar concepts with small differences

� private (-)

� access for defining class only

� package (~)

Visibility in UML, Java and C++

� package (~)

� not in C++ (namespaces have “public” visibility)

� no explicit notation in Java, access for package members

� protected (#)

� access for subclasses

� in Java access for package members

� public (+)

� access for everybody
Basics of programming 3 © BME IIT, Goldschmidt Balázs 9

� Classic approach

� implicit units

� e.g. double speed // [m/s]

� good documentation is needed (c.f. mars probe)

Handling Units

� good documentation is needed (c.f. mars probe)

� even in API: Thread.sleep(long)

� Sophisticated approach

� explicit units

� helps conversion, logging, etc

� might be overkill

Basics of programming 3 © BME IIT, Goldschmidt Balázs 10

Unit

Quantity

#value

+getValue()
+setValue()

Meter Second

+unit

� Dependency

� temporal, lasts a single method call

� Association

Associations between classes

� Association

� long term, lasts multiple method calls

�reference is stored

� Aggregation / Composition

� life long

� lifecycle management is needed

Basics of programming 3 © BME IIT, Goldschmidt Balázs 11

� Notation

� dashed line

� In Java

Dependency

� method parameter or return value

� methods doesn’t remember reference

� In C++

� method parameter or return value

� pointer, reference?

� pointer params need life cycle hints (orphan, adopt)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 12

� Notation

� solid line

� arrows and crosses show navigability

� In Java

Association

� In Java

� Storing reference

� Lifecycle is taken care of by GC

� In C++

� Storing pointer to object

� Lifecycle is taken care of by others

� no delete in destructor

Basics of programming 3 © BME IIT, Goldschmidt Balázs 13

Association

Man Woman

mother

wife

Basics of programming 3 © BME IIT, Goldschmidt Balázs 14

// C++

class Woman {}

class Man {

Woman* wife;

Woman& mother;

public:

~Man() {}

}

// JAVA

class Woman {}

class Man {

Woman wife;

Woman mother;

}

� Notation

� solid line with diamond

� In Java

Aggregation / Composition

� Storing reference

� Lifecycle is taken care of by GC

� In C++

� Storing pointer to object

� Lifecycle must be taken care of

� delete in destructor

� Storing object directly

Basics of programming 3 © BME IIT, Goldschmidt Balázs 15

Aggregation / Composition

KidneyPerson

-right

-left

Basics of programming 3 © BME IIT, Goldschmidt Balázs 16

// C++

class Kidney {}

class Person {

Kidney* left;

Kidney right;

public:

~Y() {delete left;}

}

// JAVA

class Kidney {}

class Person {

Kidney left;

Kidney right;

}

� Memory handling differ in implementations

� pointers in C++

� delete is needed somewhere �

� references in Java

Association vs Aggregation

� references in Java

� GC is our friend ☺

� Association vs. Aggregation

� Java: no difference on code level

� analysis and design concepts reduced

� C++: difference in life cycle management

� maintains analysis and design decisions

Basics of programming 3 © BME IIT, Goldschmidt Balázs 17

� Represents responsibilities of an association

� not assignable to any party

� e.g. Student attends Course

Association class

� analysis level, OO languages usually do not support it

Basics of programming 3 © BME IIT, Goldschmidt Balázs 18

Student

+name

Course

+subject

Attendance

+mark

* *

� Design and implementation

� join class

� 1-n multiplicity on Association class

Association class

Basics of programming 3 © BME IIT, Goldschmidt Balázs 19

Student

+name

Course

+subject

Attendance

+mark

* *

1 1

� Cardinality (multiplicity)

� ordinal: 1 reference

� optional: 0..1 reference

Associations’ attributes

� range: 2..5 collection (range check?)

� unlimited: * collection

� Qualifier associative array (map, etc)

� Other

� unique set

� ordered list

Basics of programming 3 © BME IIT, Goldschmidt Balázs 20

Associations’ attributes

F

0..1

// JAVA

class H { String id; }

class G {

Map<String,H> t;

private F f;

}

class F {-f

Basics of programming 3 © BME IIT, Goldschmidt Balázs 21

G H

2..*

0..1

+name+id

{ordered, unique}

1

class F {

SortedSet<G> x;

// range check?

}

~t

~x

-f

� Notation

� solid line with triangle

� Java

Inheritance

� single inheritance between classes

� public inheritance only

� C++

� multiple inheritance

� virtual inheritance

� public and private inheritance

� in UML, for private use stereotypes
Basics of programming 3 © BME IIT, Goldschmidt Balázs 22

� Notation

� stereotype <<interface>>

� implementation: dashed line with triangle

� lollipop

Interfaces

� lollipop

� Java

� separate meta-type

� multiple inheritance for interfaces

� C++

� no separate meta-type

� all methods pure virtual
Basics of programming 3 © BME IIT, Goldschmidt Balázs 23

� Interfaces

� method signatures only

� use when

implementations might vary, but are out of scope

Abstract classes vs. Interfaces

� implementations might vary, but are out of scope

� access of functionality must be separated

� Abstract classes

� might contain code

� use when

� default implementation is needed in superclass

� hook methods are needed in subclasses

Basics of programming 3 © BME IIT, Goldschmidt Balázs 24

� UML

� abstract class (method): name in italic

� interface: stereotype <<interface>> or lollipop

� Java

Abstract classes vs. Interfaces

� Java

� separate meta-types for abstract and interface

� multiple inheritance for interfaces

� separate expected functionality with interfaces

� C++

� no explicit abstract or interface type

� pure virtual methods, no distinction

Basics of programming 3 © BME IIT, Goldschmidt Balázs 25

Abstract classes and interfaces

T R

<<interface>>

S // C++

f()
g()

Visibility is omitted!

Basics of programming 3 © BME IIT, Goldschmidt Balázs 26

S

// JAVA

abstract class T {

abstract void f();

void g() { ... }

}

interface S { void h(); }

class R extends T

implements S {...}

// C++

class T {

virtual void f() = 0;

void g() { ... }

}

class S {

virtual void h() = 0;

}

class R : public T,

public S {...}

h()

� Car is accessed differently by people

�driver must not maintain car �

Interface for separating access

New notation:

Basics of programming 3 © BME IIT, Goldschmidt Balázs 27

RegularUse

Maintenance

Car

Driver

Mechanic

New notation:

socket

Old notation:

dependency

Lollipop

� Car is accessed differently by people

�driver must not maintain car �

Interface for separating access

Stereotype

Basics of programming 3 © BME IIT, Goldschmidt Balázs 28

Car

Driver

Mechanic

<<interface>>
RegularUse

<<interface>>
Maintenace

Stereotype

and box

Can specify

methods

+steer(phi)
+accelerate(p)

+checkBrake()

� Overriding methods

� modifies inherited behaviour

� UML best practice

Inheritance: method override

� in subclasses only show overridden methods

� when superclass is visible on diagram

� Java best practice

� use @Override annotation in subclass

� C++

� method must be virtual in superclass

Basics of programming 3 © BME IIT, Goldschmidt Balázs 29

� Static structure is captured by class diagrams

� show all connections

� closely related to source code

� Behaviour is implemented in methods

Behaviour

� Behaviour is implemented in methods

� methods are executed during runtime

� method bodies are omitted from class diagram

� Internal behaviour (intra-object)

� mostly state chart, seldom activity diagram, etc.

� External behaviour (inter-object)

� interaction diagrams (sequence and communication)
Basics of programming 3 © BME IIT, Goldschmidt Balázs 30

� Communication diagram

� represents objects

� and relationships between objects

relationship is static

Modelling behaviour

� relationship is static

� if no communication, called object diagram

� and communication between objects

� communication is dynamic

� Objects are instances of classes

� object diagram is an instance of class diagram

Basics of programming 3 © BME IIT, Goldschmidt Balázs 31

Class and Object diagram
Pacman

+setStrength(s)

+incWealth(a)

+kill()
Monster

+meet(p: Pacman) Diamond Shield

Collectable

+collect(p: Pacman)-c

0..5

+meet(c:Collectable)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 32

m1 : Monster
p : Pacman

d1 : Diamond

s1 : Shield

d2 : Diamond

+meet(p: Pacman) Diamond Shield

Java implementation (partial)
class Monster {

public void meet(Pacman p) {

p.kill();

}

}

interface Collectable {

boolean collect(Pacman p);

class Pacman {

double strength;

double wealth;

public void

meet(Collectable c){

if (n<5) if

(c.collect(this))

Basics of programming 3 © BME IIT, Goldschmidt Balázs 33

boolean collect(Pacman p);

}

class Diamond implements Collectable

{

double value;

public boolean collect(Pacman p) {

p.incWealth(value);

}

}

class Shield implements Collectable

{...}

(c.collect(this))

n++;

}

public void

intWealth(double w) {

wealth += w;

}

...

}

Java implementation (objects)

Monster m1 = new Monster();

Diamond d1 = new Diamond();

Diamond d2 = new Diamond();

Shield s1 = new Shield();

Pacman p = new Pacman();

Basics of programming 3 © BME IIT, Goldschmidt Balázs 34

Pacman p = new Pacman();

// setting up connections is omitted here

m1 : Monster
p : Pacman

d2 : Diamond

s1 : Shield

d1 : Diamond

� Links may have messages

� implemented by method calls

Communication (collaboration)

Testing

environment

Basics of programming 3 © BME IIT, Goldschmidt Balázs 35

m1 : Monster
p : Pacman

d2 : Diamond

s1 : Shield

d1 : Diamond

System

1: meet(d2)

environment

Communication implemented
// objects created, links initialized, then ...

p.meet(d2);

// p.meet(d2) calls d2.collect(this)

// d2.collect(this) calls p.incWealth(5)

m1.meet(p);

// m1.meet(p) calls p.kill();

Basics of programming 3 © BME IIT, Goldschmidt Balázs 36

m1 : Monster
p : Pacman

d2 : Diamond

s1 : Shield

d1 : Diamond

System

1: meet(d2)

� Sequence diagram

� represents object life-lines

� sequence of communication between objects

� Activity diagram

Modelling behaviour 2

� Activity diagram

� describes external and internal behaviour

� State chart

� represent internal behaviour

� stimuli are mostly method calls

� state representation is arbitrary

Basics of programming 3 © BME IIT, Goldschmidt Balázs 37

Sequence diagram

System p:Pacman m1:Monster d2:Diamond

1 : meet(d2)
1.1 : collect(p)

examplesd

Basics of programming 3 © BME IIT, Goldschmidt Balázs 38

1.1 : collect(p)

1.1.1 : incWealth(5)

2 : meet(p)

2.1 : kill()

� Class diagram

� all methods should appear on interaction diagrams

� Sequence and communication diagrams

� all messages should appear on class diagrams

How concepts correlate

� all messages should appear on class diagrams

� Source code

� class structure resembles class diagram

� method signatures, attributes, inheritance, associations

� method bodies implement dynamics

� interaction diagrams represent the execution of methods

� state-charts and activity diagrams mostly for internals

Basics of programming 3 © BME IIT, Goldschmidt Balázs 39

