
Basics of 

programming 3programming 3

Unit tests in Java: JUnit



� Verification and validation has many levels

� system tests

� integration tests

Unit tests

� unit tests

� etc

� Testing a single unit is unit test

� units in OO are class and object

� Automatism and repeatability are important

� regression tests

Basics of programming 3 © BME IIT, Goldschmidt Balázs 2



� Small part of the software is tested

�Single class or method

�Each and every non-trivial method 

Unit testing

�Each and every non-trivial method 

� Tests are independent

�Tests are stateless

� Developer and tester should be different 

persons

Basics of programming 3 © BME IIT, Goldschmidt Balázs 3



� Code review

� Useful if rules are observed

� Not enough

Unit testing – classical approach

� Manual testing

� Develop tester applications

� Simple

� Becomes unmaintainable with time

� Test are not organised

� Results are not coherent

Basics of programming 3 © BME IIT, Goldschmidt Balázs 4



� System.out.println()

� Continuous diagnostic messages

� Simple

Unit testing – manual approach

� Code is full with println-s

� how to turn off?

� Output tends to be unreadable

� Manual control is needed

Basics of programming 3 © BME IIT, Goldschmidt Balázs 5



� Debugger

� IDE support for observing variables

�Slow

Unit testing – manual approach

�Slow

�Cumbersome for complex (multithreaded) 

applications

�Has to be done after each change

�Still manual

Basics of programming 3 © BME IIT, Goldschmidt Balázs 6



� XUnit for many languages and environments

� CppUnit (C++)

� unittest (python)

� etc.

Unit testing – frameworks

� etc.

� JUnit

� open source Java testing framework

� available as a JAR file

� tests are written in Java

� IDE-s provide built-in support

� separate windows, perspectives, etc

Basics of programming 3 © BME IIT, Goldschmidt Balázs 7



� Assertions for testing expected results

�standard result checks 

� Test fixtures for sharing common test data

JUnit features

� Test fixtures for sharing common test data

�common functionality written once 

� Test runners for running tests

�automated testing 

�regression is easy

Basics of programming 3 © BME IIT, Goldschmidt Balázs 8



� Simple integer implementation

JUnit example

public class MyInt {
private int value;

Basics of programming 3 © BME IIT, Goldschmidt Balázs 9

public MyInt(int aValue) {
value = aValue;

}
public void add(MyInt anInt) {

value += anInt.getValue();
}
public int getValue() {

return value;
}

}



� Simple test – naïve
� Create some objects – testing context, fixture

� Send messages to those objects

� Verify some assertions

Example test

Basics of programming 3 © BME IIT, Goldschmidt Balázs 10

public class MyTest {
public static void main(String[] args) {
MyInt m1 = new MyInt(5);
MyInt m2 = new MyInt(30);
m1.add(m2);
if (m1.getValue() != 35)
System.out.println("Sum failed");

if (m2.getValue() != 30)
System.out.println("m2 failed");

}}

Initialization

Check

Test run



Example Junit test

public class MyIntTest1 {
MyInt m1, m2;
@Before
public void setUp() {
m1 = new MyInt(5);

Initialization

Basics of programming 3 © BME IIT, Goldschmidt Balázs 11

m1 = new MyInt(5);
m2 = new MyInt(30); 

}
@Test
public void testAddInt() {
m1.add(m2);
assertEquals("sum Test", 35, m1.getValue());
assertEquals("m2 Test", 30, m2.getValue());

}
}

Initialization

Check

Test run



� Java Build Path/Libraries/Add Library/Junit 4

� Run As/Junit Test

JUnit in Eclipse

Basics of programming 3 © BME IIT, Goldschmidt Balázs 12



� Constraints

� Each test is implemented as a method

� It takes no parameters and returns no value

Test method

� Test methods must be public

� Annotated by @Test

� Test order is undefined but deterministic

� order not known, but always the same

Basics of programming 3 © BME IIT, Goldschmidt Balázs 13



� Intro

�combine tests for a common set of objects

�e.g. initialization, clean-up etc

Fixtures

�e.g. initialization, clean-up etc

� tests don’t share the objects

� each test separately tests its own set of objects

�common objects are instance variables

Basics of programming 3 © BME IIT, Goldschmidt Balázs 14



� Types

�@Before

� called before each test: builds the context

�@After

Fixtures 2

�@After

� called after each test: tears down the context

�@BeforeClass / @Afterclass

� called before first test / after last test

� for resource-intensive objects and initialization

Basics of programming 3 © BME IIT, Goldschmidt Balázs 15



� Execution order for two tests:

@BeforeClass methods

@Before methods

Fixtures and tests

@Test method #1

@After methods

@Before methods

@Test method #2

@After methods

@AfterClass methods

Basics of programming 3 © BME IIT, Goldschmidt Balázs 16



msg is printed 

when fail
� How to check if result is correct?

� static void assertTrue([String msg,] boolean condition)
� static void assertFalse([String msg,] boolean condition)

Testing results

� static void assertNull([String msg,] Object object)
� static void assertNotNull([String msg,] Object object)

� static void assertSame([String msg,] Object exp, Object act)
� static void assertNotSame([String msg,] Object unexp, Object 

act)

� static void assertEquals([String msg,] X exp, X act)
� static void assertArrayEquals([String msg,] X exp, X act)

� static void fail([String msg])

Basics of programming 3 © BME IIT, Goldschmidt Balázs 17



� Command line
� java org.junit.runner.JUnitCore TestClass1 
[...other test classes...]

� Inside application

Running tests

� Inside application
� org.junit.runner.JUnitCore.

runClasses(TestClass1.class, ...);

� Inside IDE

� click on run tests…

Basics of programming 3 © BME IIT, Goldschmidt Balázs 18



� Success

� OK

� Failure

Test results

� result is different from expected

� tests fail if any assertion fails 

� Error

� unexpected exception was thrown

� Ignore

� test was ignored (assume or @Ignore)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 19



� Expecting exceptions
@Test(expected=NumberFormatException.class) ...

� Setting timeout

Test results 2

� Setting timeout
@Test(timeut=100) ...

� Ignoring test
@Ignore("some message") @Test ...

� using assumeXXX method changes fails into ignores

� assertNotNull(obj) → assumeNotNull(obj)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 20



� Same init for different test classes

� put code into subclass of ExternalResource

� public void before(): runs before each test

� public void after(): runs after each test

Rules

� public void after(): runs after each test

� newly constructed for each test

� add resource class to test

@Rule public ExternalResource resource = 

new MyExternalResource();

� class level rules (like BeforeClass, etc)

@ClassRule ...

Basics of programming 3 © BME IIT, Goldschmidt Balázs 21



� Test execution for subclass tests

� bottom-up in inheritance hierarchy

� Before execution

Subclassing test classes

� top-down in inheritance hierarchy

� After execution

� bottom-up in inheritance hierarchy

Basics of programming 3 © BME IIT, Goldschmidt Balázs 22



� For same test with different parameters

� instances are created for the cross-product of the test 

methods and the test data elements

Parameterized testing

Basics of programming 3 © BME IIT, Goldschmidt Balázs 23

@RunWith(value = Parameterized.class)
public class ParamTest {

private int a, b;
public ParamTest(int a1, int b1) {a = a1; b = b1;}
@Parameters public static Collection<Object[]> data() {

return Arrays.asList(new Object[][]{{1,5},{4,9},{2,7}});
}
@Test public void runTest() {Assert.assertTrue(a < b);}

}



� Grouping tests together

Creating test suites

@RunWith (Suite.class) 
@Suite.SuiteClasses ({

Basics of programming 3 © BME IIT, Goldschmidt Balázs 24

@Suite.SuiteClasses ({
TestFeatureLogin.class, 
TestFeatureLogout.class, 
TestFeatureNavigate.class, 
TestFeatureUpdate.class

}) 
public class FeatureTestSuite {

// empty class holding the annotations 
}



� Tests can be annotated with categories

� Categories are simple annotations

� Tests can be category-annotated both on 

Categories of tests

� Tests can be category-annotated both on 

method and class level

@Category(categoryType1.class)

@Category({categoryType1.class, 

categoryType2.class})

Basics of programming 3 © BME IIT, Goldschmidt Balázs 25



Category example

public interface FastTests{} 
public interface SlowTests {} 

public class A { 
@Test public void a() { ... }

category markers

Basics of programming 3 © BME IIT, Goldschmidt Balázs 26

@Category(SlowTests.class) 
@Test public void b() { ... } 

}

@Category({SlowTests.class, FastTests.class}) 
public class B { 
@Test public void c() { ... } 

} 



� In test suites one can select a set of categories

Categories used in suites

@RunWith(Categories.class)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 27

@IncludeCategory(SlowTests.class)

@ExcludeCategory(FastTests.class)

@SuiteClasses({ A.class, B.class })

public class SlowTestSuite {

// Will run only test annotated

// with SlowTests in test cases A and B

}



� Separate tests from sources

� Usually separare directories (src vs. test)

� Final application doesn’t contain tests

JUnit conventions

� Test classes in same package as tested classes

� Allows tests to access package, protected members

� For each tested class a single test class

� Not a strict rule ☺

Basics of programming 3 © BME IIT, Goldschmidt Balázs 28



� Testing concurrent classes is hard

�help: ConcurrentUnit
1. Create a Waiter

Concurrent testing

2. Use Waiter.await to block the main test thread.

3. Use the Waiter.assert calls from any thread to perform 

assertions. 

4. Once expected assertions are completed, use 

Waiter.resume call to unblock the main thread.

Basics of programming 3 © BME IIT, Goldschmidt Balázs 29



� How much of the code is tested?

�coverage = tested / total

� including exceptions

Test coverage

x<y?

� including exceptions

�static vs dynamic check

� are all paths tested?

� Goal: 100% coverage

�bugs might still remain �

Basics of programming 3 © BME IIT, Goldschmidt Balázs 30

A B

C D

p<q?


