
Basics of 

programming 3programming 3

Multithreading in Java



� Motivation

� in most cases sequential (single threaded) 

applications are not adequate

� it’s easier to decompose tasks into separate 

instruction sequences

Thread basics

instruction sequences

� e.g.: keyboard handling and graphical update

Basics of programming 3 © BME IIT, Goldschmidt Balázs 2

single threaded multithreaded



� Implicit thread handling

� class Thread, interface Runnable

� threads share all memory

can have static thread-specific data

Java thread basics

� can have static thread-specific data

� threads execute methods

� each thread executing (mostly) independently

� synchronization by object access (monitors)

� non-strict priority scheduling

Basics of programming 3 © BME IIT, Goldschmidt Balázs 3



java.lang.Thread

Object

+wait()

+notify()

+notifyAll()

Runnable

<<interface>>

+run()

4

Thread

+id

+name

+priority

+daemon

+start()

+run()

+sleep()

+yield()

+join()

Basics of programming 3 © BME IIT, Goldschmidt Balázs



� Entry point: run

� every thread must have a void run() method

� in this method all Java features can be used

Java thread basics

� Starting point

� every thread has a start method

� it has to be called to start the thread

� starts a new execution thread and calls run

� Creating a thread

� inheritance (Thread) or delegation (Runnable)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 5



Creating and starting a thread

� Inheritance: extending class Thread
public class MyThread extends Thread {

int a;
int b;
public MyThread(int i) { b=i; }

Basics of programming 3 © BME IIT, Goldschmidt Balázs 6

public void run() {
for (a = 0; a < b; a++) { System.out.println(a); }

}
}

MyThread mt = new MyThread(1000);
mt.start();
...



Creating thread: inheritance

Object

+wait()
+notify()
+notifyAll()

Runnable
<<interface>>

+run()

� Extending class Thread

7

Thread

+id
+name
+priority
+daemon

+start()
+run()
+sleep()
+yield()
+join()

MyThread

+run()

Basics of programming 3 © BME IIT, Goldschmidt Balázs



Creating and starting a thread

� Delegation: implementing if. Runnable
public class MyThread implements Runnable {

int a;
int b;
public MyThread(int i) { b=i; }

Basics of programming 3 © BME IIT, Goldschmidt Balázs 8

public void run() {
for (a = 0; a < b; a++) { System.out.println(a); }

}
}

MyThread mt = new MyThread(1000);
Thread t = new Thread(mt); // kell egy szál, ami futtat
t.start();
...



Creating threads: delegation

� Implementing interface Runnable

Object

+wait()
+notify()
+notifyAll()

Runnable
<<interface>>

+run()

-d

Objektumorientált SW-tervezés © BME IIT, Goldschmidt Balázs 9

+notifyAll()

Thread

+id
+name
+priority
+daemon

+start()
+run()
+sleep()
+yield()
+join()

MyThread

+run()

-d

d.run();



� run()

� entry point of the thread (like main for an application)

� start()

java.lang.Thread

Basics of programming 3 © BME IIT, Goldschmidt Balázs 10

� starts the thread, calls run()

� sleep(long millis [, int nanos])

� thread waits for the given time

� join([long millis [,int nanos]])

� waits for the given thread (for a given time)



java.lang.Thread

� yield()

� gives CPU usage to next thread

� interrupt()
� interrupts the thread when it's waiting

Basics of programming 3 © BME IIT, Goldschmidt Balázs 11

� eg. for wait, sleep, etc. InterruptedException

� setDaemon(boolean on)

� boolean isDaemon()

� sets daemon flag

� when JVM stops, it stops all daemon threads

� non-daemon threads are waited for



java.lang.Thread

� int getState()

� returns state (runnable, waiting, etc, see later)

� int getId()

Basics of programming 3 © BME IIT, Goldschmidt Balázs 12

� returns thread id

� set/getName()

� thread’s name

� set/getPriority()

� thread’s priority

� is it daemon?



java.lang.Thread

� boolean isAlive()

� does is still run?

� static Thread currentThread()

Basics of programming 3 © BME IIT, Goldschmidt Balázs 13

� reference to the running thread object

� for accessing the thread executing current code

� ThreadGroup getThreadGroup()

� returns threadgroup

� static int activeCount()

� number of active threads in the threadgroup



java.lang.Thread

� Stopping a thread

� Thread.stop() method is deprecated

private volatile boolean stopSignal;
MyThread(){ stopSignal = false; }
public void stop() { stopSignal = true; }

Basics of programming 3 © BME IIT, Goldschmidt Balázs 14

public void stop() { stopSignal = true; }
public void run() {

while (!stopSignal) {
do a step or two...

}
}



� Objects have

� state (attributes, associations)

� behaviour (methods)

Theads vs. Objects

� Threads do

� execute statements described in methods

� have Thread objects referring to them

� c.f. Thread.getCurrentThread()

� OO API for thread handling

Basics of programming 3 © BME IIT, Goldschmidt Balázs 15



Mutual exclusion

� Motivation

� some resources should be accessed by just a single 

thread at a time

Every object has its own monitor

Basics of programming 3 © BME IIT, Goldschmidt Balázs 16

� Every object has its own monitor

� only one thread allowed inside the monitor

� other threads must wait in the monitor queue

� recursive entry is allowed

� static boolean holdsLock(Object obj)

� checks if actual thread is inside monitor of obj



Mutual exclusion: monitor

Object

+wait()
+notify()

ThreadMonitor -blocked

*0..1

17

+notify()
+notifyAll()

*0..1

Thread

+inside0..1

*

Basics of programming 3 © BME IIT, Goldschmidt Balázs



Objects' monitors explained

Object

attributes

Basics of programming 3 © BME IIT, Goldschmidt Balázs 18

Blocked queue

Entering thread
Thread inside

attributes

methods



Mutual exclusion

� Entering the monitor with synchronized

Hashtable<String, Integer> ht = ...;
public void increment(String s) {

...

Basics of programming 3 © BME IIT, Goldschmidt Balázs 19

...
synchronized (ht) {

int i = ht.get(s);
i++;
ht.put(s,i);

}
...

}



Mutual exclusion

� synchronized

� before a block

� needs an object reference parameter

� before a method

Basics of programming 3 © BME IIT, Goldschmidt Balázs 20

� before a method

� monitor is that of the object whose method is called

� equivalent to a method wide synchronized block

void foo() {
synchronized(this) { 

... 
}

}

synchronized void foo() {

...

}



Thread signalling

� Object.wait([long millis [,int nanos]])

� if called, the thread will wait for signals for the 

specified time

� thread must be inside the monitor of the object

Basics of programming 3 © BME IIT, Goldschmidt Balázs 21

� thread must be inside the monitor of the object

� during wait it leaves the monitor temporarily

synchronized (obj) {
...
try {

obj.wait(); // temporarily leaving monitor 
} catch (InterruptedException ie) {...}
...

}



Thread signalling

� Object.notify()
� notifies a thread that waits on the objects

� thread must be inside the monitor of the object

� notified thread enters the monitor queue of the object

Basics of programming 3 © BME IIT, Goldschmidt Balázs 22

� notified thread enters the monitor queue of the object

� Object.notifyAll()
� same as above, but notifies all waiting threads

synchronized (obj) {
obj.notify(); // wakes a waiting thread 

}



Monitors and wait-notify
T1 T2Obj

1 : start 1.1 : run() 2 : start

2.1 : run()1.1.1 : enter()

2.1.1 : enter()

1.1.2 : foo()

1.1.3 : wait()

23

1.1.3 : wait()

1.1.3.1 : exit() (2.1.1: enter)

2.1.2 : notify()

2.1.2.1: enter()

2.1.3 : exit()

(1.1.3: wait)

1.1.4 : exit()

Basics of programming 3 © BME IIT, Goldschmidt Balázs



States of the threads

� NEW
� newly created, not yet started

� RUNNABLE (+running)
� runs or is able to run (already started)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 24

� runs or is able to run (already started)

� BLOCKED
� waits for a monitor

� WAITING, TIMED_WAITING
� waiting thread (Object.wait, Thread.sleep)

� TERMINATED
� stopped, can not be restarted



Thread state diagram

NEW

BLOCKED

start enter _mon_queue

exit_mon_queue
o.notify[All]

[wait timeout]

(assume no exception occurs)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 25

queued

WAITING

TERMINATED

running

start

schedule

schedule

yield

o.wait

[end_of_run]

RUNNABLE

[sleep timeout]

sleep(t)

WAITING

TIMED_WAITING

o.wait(t)



� Wrapper classes

� Fabricated by class Collections

� public static <T> Collection<T>

synchronizedCollection(Collection<T> c)

Thread-safe collections

synchronizedCollection(Collection<T> c)

� also for List, Set, SortedSet, Map, SortedMap

� Backed by original collection

� Stands between client (caller) and collection

� Underlying collection is modified, accessed, etc 

� Makes calls synchronized

Basics of programming 3 © BME IIT, Goldschmidt Balázs 26



� Genuine thread-safe collection

� In package java.util.concurrent

� ConcurrentHashMap

Thread-safe Map implementation 

Thread-safe collections

� Thread-safe Map implementation 

� CopyOnWriteArrayList/Set

� Modification creates new array

→ modification are costly

� Iterators are independent, but can not modify

Basics of programming 3 © BME IIT, Goldschmidt Balázs 27



� Thread data is cached

� Cache might be out-of-date

� Update e.g. before/after synch block

→ attributes might differ in different caches

Volatile

→ attributes might differ in different caches

� Keyword volatile

� makes attributes’s access atomic, synchronized

� Useful for 2-word types as well (eg. double, long)

� Makes data fetch atomic

Basics of programming 3 © BME IIT, Goldschmidt Balázs 28



� Interruption

� InterruptedException, etc

� Per-thread data

Further thread features

� ThreadLocal<T>

� Threadpools

� Callable and ExecutorService

� Timed starts

� TimerTask

Basics of programming 3 © BME IIT, Goldschmidt Balázs 29


