Basics of

programming 3

Java and UML

Steps of SW development

m Requirements
goal: defining what is expected
m Analysis
goal: understanding problem domain
m Design
goal: closing on implementation decisions

m Implementation
goal: creating formal, machine language description

m [esting
goal: assessing adherence to requirements

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Models in SW development

m Analysis

focus on responsibilities and interactions
m public method are defined
m attributes (if any) only specify responsibility

m Design
focus on internal structures

m protected, package, private members
m high-level structures (e.qg. list, set) concretized

m Implementation

programming language constraints considered
= implementation decisions only

Basics of programming 3 © BME IIT, Goldschmidt Balazs

" S
Modelling

m High level description

details are neglected on purpose
m essence of good modelling: what is relevant?
m flexibility and universality are important

must maintain abstraction level
m don’t dive into details
s knowing capabilities is still a must

m Formal language is needed
to understand each other
to understand past self

Basics of programming 3 © BME IIT, Goldschmidt Balazs

"
OO concepts in modelling

m Objects and classes
static and dynamic views
class level and object level views

m Types (“"dumb objects™)
primitive and complex
abstraction is needed

m Associations and Inheritance
connections have abstraction level too

Basics of programming 3 © BME IIT, Goldschmidt Balazs

"
Static and dynamic views

m Static view

all or relevant components and their relationships

describes all kinds of connections
m temporary connection (dependency)
m constant (association, aggregation, inheritance, etc)
m instance or class level

m Dynamic view
temporal behaviour of components

m Views are related
must be consistent

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Modelling attributes (types)

m Java types

m Abstract types String name
name class Address
address int age
age class Coord

coordinates

m C++ types
char” (string) name
struct (class) address
int age
struct coord

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Modelling attributes (types)

m Keep abstraction level high
e.g. use coordinates as type, not class

m Hide attributes
private or protected

use getter/setter methods for access
= enables additional behaviour

m Type representation should be shy
should only consider internal consistency

Basics of programming 3 © BME IIT, Goldschmidt Balazs

" S
Visibility in UML, Java and C++

m Similar concepts with small differences
private (-)
m access for defining class only
package (~)
= not in C++ (namespaces have “public” visibility)
= no explicit notation in Java, access for package members

protected (#)

m access for subclasses
m in Java access for package members
public (+)

m access for everybody
Basics of programming 3 © BME IIT, Goldschmidt Balazs

"
Handling Units

m Classic approach
implicit units
m e.g.double speed // [m/s]

s good documentation is needed (c.f. mars probe)

= even in APl: Thread.sleep(long)
m Sophisticated approach
explicit units
helps conversion, logging, etc
might be overkill

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Quantity

#value

+getValue
+setValue

\+unit

Unit

A

Meter

S

Second

10

I
Assoclations between classes

m Dependency
temporal, lasts a single method call
m Association
long term, lasts multiple method calls
reference is stored
m Aggregation / Composition
life long
lifecycle management is needed

Basics of programming 3 © BME IIT, Goldschmidt Balazs 11

"
Dependency

m Notation
dashed line ————————— >

m |[n Java

method parameter or return value
methods doesn’t remember reference

mIn C++
method parameter or return value

pointer, reference?
m pointer params need life cycle hints (orphan, adopt)

Basics of programming 3 © BME IIT, Goldschmidt Balazs

12

» I
Association

m Notation
solid line >
arrows and crosses show navigability
m |In Java
Storing reference
Lifecycle is taken care of by GC
m[n C++

Storing pointer to object

Lifecycle is taken care of by others
m No delete in destructor

Basics of programming 3 © BME IIT, Goldschmidt Balazs

13

Association

wife
Man _— Woman
S —
mother
// JAVA . :// C++
' class Woman {} ' class Woman {}
' class Man { ' class Man {
' Woman wife; Woman* wife;
, Woman mother; Woman& mother;
) 5 . public:
' . ~Man() {}
'}

Basics of programming 3 © BME IIT, Goldschmidt Balazs 14

" I
Aggregation / Composition

m Notation

solid line with diamond <@

m In Java
Storing reference
Lifecycle is taken care of by GC

mn C++

Storing pointer to object

m Lifecycle must be taken care of
delete in destructor

Storing object directly

Basics of programming 3 © BME IIT, Goldschmidt Balazs

15

Aggregation / C

omposition

-left

Person o

Kidney

' class Kidney {}
' class Person {
| Kidney left;
Kidney right;

Basics of programming 3 © BME IIT, Goldschmidt Balazs

-right

' class Kidney {}
' class Person {
| Kidney* left;
Kidney right;
public:
~Y () {delete left;}

__

16

Association vs Aggregation

m Memory handling differ in implementations

pointers in C++
m delete is needed somewhere ®

references in Java
m GC is our friend ©
m Association vs. Aggregation

Java: no difference on code level
= analysis and design concepts reduced

C++: difference in life cycle management
= maintains analysis and design decisions

Basics of programming 3 © BME IIT, Goldschmidt Balazs

17

» I
Association class

m Represents responsibilities of an association
not assignable to any party
e.g. Student attends Course

analysis level, OO languages usually do not support it

Student |* * Course
Attendance
+mark

Basics of programming 3 © BME IIT, Goldschmidt Balazs 18

I
Association class

m Design and implementation
join class
1-n multiplicity on Association class

Student |1) Course
+name +subject
INIVA
Attendance
+mark

Basics of programming 3 © BME IIT, Goldschmidt Balazs

19

" I
Associations’ attributes

m Cardinality (multiplicity)

ordinal: 1 reference

optional: 0..1 reference

range: 2..5 collection (range check?)

unlimited: * collection
m Qualifier associative array (map, etc)
m Other

unique set

ordered list

Basics of programming 3 © BME IIT, Goldschmidt Balazs

20

Associations’ attributes

Eclass H { String id; }
F ' class G {

. Map<String,H> t;
private F f£;

1

0.1] -f ' class F {
i SortedSetG> x;
E // range check?
L :
2.k | ~x T
{ordered, unique}
G 1 H

+id

Basics of programming 3 © BME IIT, Goldschmidt Balazs 21

» I
Inheritance

m Notation

solid line with triangle <

m Java

single inheritance between classes
public inheritance only
m C++
multiple inheritance
m virtual inheritance

public and private inheritance

m in UML, for private use stereotypes
Basics of programming 3 © BME IIT, Goldschmidt Balazs

22

" I
Interfaces

m Notation

stereotype <<interface>>
m implementation: dashed line with triangle

separate meta-type
multiple inheritance for interfaces

m C++

no separate meta-type

= all methods pure virtual
Basics of programming 3 © BME IIT, Goldschmidt Balazs

23

Abstract classes vs. Interfaces

m Interfaces

method signatures only

use when

= implementations might vary, but are out of scope
m access of functionality must be separated

m Abstract classes
might contain code

use when

m default implementation is needed in superclass
s hook methods are needed in subclasses

Basics of programming 3 © BME IIT, Goldschmidt Balazs

24

Abstract classes vs. Interfaces

m UML

abstract class (method): name in italic
interface: stereotype <<interface>> or lollipop

m Java

separate meta-types for abstract and interface

multiple inheritance for interfaces
m separate expected functionality with interfaces

m C++

no explicit abstract or interface type
pure virtual methods, no distinction

Basics of programming 3 © BME IIT, Goldschmidt Balazs 25

Abstract classes and interfaces

r < R Visibility is omitted!
0

g()

<<interface>> L :
S . // C++ '

iclass T {

o __ | virtual void £() = 0;
' // JAVA | void g() { ... }
' abstract class T {)
' abstract void f(); - iclass S {
. wvoid g() { ... } | virtual void h() = 0;
))
'interface S { void h(); } ! iclass R : public T,
Eclass R extends T EE public S {...}

implements S {...}

__

Basics of programming 3 © BME IIT, Goldschmidt Balazs 26

Interface for separating access

m Car is accessed differently by people
driver must not maintain car ®

New notation: l
socket Lollipop
RegularUse
Driver O
/ \ Car
Mechanic | ()
Maintenance
Old notation:
dependency

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Interface for separating access

m Car is accessed differently by people
driver must not maintain car ®

l Stereotype
and box
Driver < <interface>>
_______ RegularUse
T . ﬂ\‘\ Car
- +steer(phi)
Mechanic +accelerate(p) A//
-k <jnterface>>
Maintenace
+checkBrake() l C?nnefhpoedcslfy

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Inheritance: method override

m Overriding methods
modifies inherited behaviour
m UML best practice

In subclasses only show overridden methods
m When superclass is visible on diagram

m Java best practice

use @Override annotation in subclass
m C++

method must be virtual in superclass

Basics of programming 3 © BME IIT, Goldschmidt Balazs

29

Behaviour

m Static structure is captured by class diagrams
show all connections
closely related to source code

m Behaviour is implemented in methods
methods are executed during runtime
method bodies are omitted from class diagram
m Internal behaviour (intra-object)
mostly state chart, seldom activity diagram, etc.
m External behaviour (inter-object)
interaction diagrams (sequence and communication)

Basics of programming 3 © BME IIT, Goldschmidt Balazs 30

"
Modelling behaviour

m Communication diagram
represents objects

and relationships between objects
m relationship is static
» if no communication, called object diagram

and communication between objects
= communication is dynamic

m Objects are instances of classes
object diagram is an instance of class diagram

Basics of programming 3 © BME IIT, Goldschmidt Balazs

31

Class and Object diagram

Pacman
0..5 Collectable
+setStrength(s)
. +incWealth(a) C | +collect(p: Pacman)
=77 +killQ)
SEOTSLEN +meet(c:Collectable) ﬁ %
+meet(p: Pacman) Diamond Shield
sl : Shield
m1 : Monster]
— | p:Pacman
/ \ d1 : Diamond
d2 : Diamond

Basics of programming 3 © BME IIT, Goldschmidt Balazs

Java implementation (partial)

' class Monster { iiclass Pacman {
| public void meet (Pacman p) { ii double strength;
p.kill () ; | double wealth;
) .| public void
) ' | meet(Collectable c) {
' interface Collectable ({ | if (n<5) if
: boolean collect (Pacman p) ; EE (c.collect(this))
'} | n++;
' class Diamond implements Collectable | | }
{ | public void
. double value; ' | intWealth (double w) {
public boolean collect (Pacman p) { ii wealth += w;
p.incWealth (value) ; ii }
.
) R, e
' class Shield implements Collectable | " 7T
{...} ’

33

Java implementation (objects)

: Monster ml = new Monster|();

iDiamond dl = new Diamond() ;

iDiamond d2 = new Diamond() ;

EShield sl = new Shield() ;

' Pacman p = new Pacman() ;

' // setting up connections is omitted here

sl : Shield

m1 : Monster]
— | p:Pacman

d1 : Diamond

Basics of programming 3 © BME IIT, Goldschmidt Balazs

////// \\\\\\\\\\\\\~d2: Diamond

34

" I
Communication (collaboration)

m Links may have messages
Implemented by method calls

Testing
environment

& System

1: meet(d2) sl : Shield
m1 : Monster 2.1 kill(p) /
% | p:Pacman

/ 11\ d2 : Diamond

o Olect)

d1 : Diamond

L1.1.;
. /ncWealth(5)

Basics of programming 3 © BME IIT, Goldschmidt Balazs 35

Communication implemented

__

. // objects created, links initialized, then ...
ip.meet(dZ);

‘ // p.meet(d2) calls d2.collect (this)

| // d2.collect(this) calls p.incWealth (5)
'ml.meet (p) ;
' // ml.meet(p) calls p.kill();

__

1: meet(d2) sl : Shield
m1 : Monster| 21’ kill(p)
I

% | p:Pacman /
/ 11\ d2 : Diamond

:CO@(D)

d1 : Diamond

L1.1.;
: /ncWealth(5)

Basics of programming 3 © BME IIT, Goldschmidt Balazs 36

"
Modelling behaviour 2

m Sequence diagram

represents object life-lines

sequence of communication between objects
m Activity diagram

describes external and internal behaviour

m State chart
represent internal behaviour
stimuli are mostly method calls
state representation is arbitrary

Basics of programming 3 © BME IIT, Goldschmidt Balazs

37

Sequence diagram

sd examplg)

System

p:Pacman

m1:Monster

1 : meet(d2) i

. collect(p)

d2:Diamond

1.1.1 : incWealth(5)

2.1 : kill)

Basics of programming 3 © BME IIT, Goldschmidt Balazs

38

" I
How concepts correlate

m Class diagram
all methods should appear on interaction diagrams

m Sequence and communication diagrams
all messages should appear on class diagrams

m Source code

class structure resembles class diagram
s method signatures, attributes, inheritance, associations

method bodies implement dynamics
m interaction diagrams represent the execution of methods
m state-charts and activity diagrams mostly for internals

Basics of programming 3 © BME IIT, Goldschmidt Balazs 39

