
Basics of 

programming 3programming 3

Java GUI and SWING



GUI basics

Basics of programming 3 © BME IIT, Goldschmidt Balázs 2

GUI basics



� Mostly window-based applications

� Typically based on widgets

� small parts (buttons, scrollbars, etc)

GUI basics

� built on a windowing framework

� Abundance of frameworks

� AWT, SWING, SWT, etc

� Logic is to be defined

� GUI builders help

Basics of programming 3 © BME IIT, Goldschmidt Balázs 3



� Heavy-weight widgets

� relies on OS features

� Abstract facade

� same look and feel on all platforms

Abstract Windowing Toolkit

� same look and feel on all platforms

� Different implementations

� incompatibility issues

� Most features still in use

� events, layoutmanagement, etc

� java.awt.*

Basics of programming 3 © BME IIT, Goldschmidt Balázs 4



� Rich set of GUI elements

� light-weight widgets

� implemented in Java

� Heavy use of model-view-controller pattern

SWING

� Heavy use of model-view-controller pattern

� complex widgets have separate model classes

� parts of rendering is implemented separately

� Configurable look and feel

� via new classes, config files and config parameters

� javax.swing.*

Basics of programming 3 © BME IIT, Goldschmidt Balázs 5



� JFrame

� JMenuBar

� JMenu

� JMenuItem

Basic window architecture

� JMenuItem

� JSplitPane

� JPanel

� JButton

� JButton

� JPanel

� JTextField

Basics of programming 3 © BME IIT, Goldschmidt Balázs 6



� Build up window

� create JFrame or other window

� put on containers and components

Window Application Lifecycle

� Register event handlers

� separate objects for handling user events

� Make it visible

� window is shown and can be used

� Close window

� release resources

Basics of programming 3 © BME IIT, Goldschmidt Balázs 7



Components and containers

Basics of programming 3 © BME IIT, Goldschmidt Balázs 8

Components and containers



� Basic widgets

� JButton

� JTextField

Components and containers

� JPanel

� JFrame

� Complex widgets

� MVC

� JList + JScrollPane

Basics of programming 3 © BME IIT, Goldschmidt Balázs 9



� Rendering is automatic

� Common functionality

� size (minimum, maximum, preferred)

Widget basics

� visibility

� enabled/disabled

� event handling

� Can be added to a container

� Containers are also widgets

� component-hierarchy

Basics of programming 3 © BME IIT, Goldschmidt Balázs 10



� Classic button

� can be clicked

� event handling later

Text and image can be set

Simple widgets: JButton

� Text and image can be set

� Size is calculated automatically

� shrinks and grows as the container asks

� Important methods
� setEnabled(boolean)

� get/setText()

Basics of programming 3 © BME IIT, Goldschmidt Balázs 11



� Classic textfield

� textual input can be entered

� Initial text and size can be set

Simple widgets: JTextField

� Size is calculated automatically if needed

� shrinks and grows as the container asks

� Important methods
� setEditable(boolean)

� get/setText(String)

� setCaretPosition(int)

� setSelectionStart/End(int)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 12



� Basic container

� components can be put on it

� Responsible for layout of components

Simple widgets: JPanel

� Size is calculated automatically if needed

� shrinks and grows as the parent container asks

� Important methods
� add(Component[, param])

� setLayout(LayoutManager)

� getComponentAt(int,int)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 13



� Basic window with frame and title

� All window operations are supported

� some has to be explicitly enabled

� Size is calculated automatically

Basic window: JFrame

� Size is calculated automatically

� based on the size of its contents

� Important methods
� add(Component, int where)

� pack()

� setVisible(boolean)

� setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 14



Example: building a GUI
JFrame f = new JFrame(”Swing Example”);
JPanel p = new JPanel();
JButton b = new JButton(”Click Me!”);
JTextField t = new JTextField(”Type here!”);

p.add(b);

Basics of programming 3 © BME IIT, Goldschmidt Balázs 15

p.add(t);
f.add(p, BorderLayout.NORTH);

f.pack();
f.setDefaultCloseOperation(f.EXIT_ON_CLOSE);
f.setVisible(true);



Event handling

Basics of programming 3 © BME IIT, Goldschmidt Balázs 16

Event handling



Event handling basics

� Listener (observer) pattern
� two roles: listener and subject

� subject receives event ...

� ... and forwards it to all registered listeners

Basics of programming 3 © BME IIT, Goldschmidt Balázs 17

� ... and forwards it to all registered listeners

� Event types for all kinds of events
� java.util.EventObject

� java.awt.AWTEvent

� java.awt.event.MouseEvent

� java.awt.event.WindowEvent

� Events and listeners can be separated
� responsibility can be dedicated



Event handling interfaces

� XEVent → XListener
� interface (implementation is needed)

� implementation has to be registered at the component

Basics of programming 3 © BME IIT, Goldschmidt Balázs 18

� addXListener(XListener el)

� XEvent must be processed

� MouseEvent, KeyEvent, AdjustmentEvent, 
FocusEvent stb.

� it is usual to use anonymous inner classes

� looks convenient but is hardly maintainable



Event handling adapters

� XAdapter
� default implementation of XListener

� empty methods

� convenience class 

Basics of programming 3 © BME IIT, Goldschmidt Balázs 19

� convenience class 

� if only a subset of methods is to be implemented

� use them for a clearer looking code

� consider single inheritance!



� Modify previous example:

� when pressing button, put current time in textfield!

� An ActionListener implementation is needed

Event handling example

� new class, take care of visibility

� actionPerformed(ActionEvent ae) method

� How to identify the button

� ActionEvent’s getSource→ Component

� ActionEvent’s getActionCommand→ String

� name of button or set by setActionCommand(String c)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 20



Event handling example
final class MyActionListener implements ActionListener {

JTextField t;
public MyActionListener(JTextField tt) { t = tt;}
public void actionPerformed(ActionEvent ae) {

if (ae.getActionCommand().equals("date")) {
t.setText((new Date()).toString());

}

Basics of programming 3 © BME IIT, Goldschmidt Balázs 21

}
}
}

...
JButton b = new JButton("Click Me!");
b.setActionCommand("date");
ActionListener al = new MyActionListener(t);
b.addActionListener(al);
...



Layout handling

Basics of programming 3 © BME IIT, Goldschmidt Balázs 22

Layout handling



� Problems
� positioning

� this page is optimized for 800x600 resolution

� what happens when resizing

Where are components placed?

� what happens when resizing

� Solution: Layout Managers
� every container has a default layout manager

� layout maganers can be changed (setLayoutManager)

� responsible for placement

� recursive calculation

� when resizing recalculation occurs

Basics of programming 3 © BME IIT, Goldschmidt Balázs 23



Layout Managers

� Container

� void setLayout(LayoutManager mgr)

� LayoutManager getLayout()

� void validate()

� recalculates placement and arranges components (recursive)

Basics of programming 3 © BME IIT, Goldschmidt Balázs 24

� recalculates placement and arranges components (recursive)

� Component add(Component comp [,int index])

� void add(Component c, Object constraint, int
index)

� adds the component to the container

� optional parameter specifies special placement demands

� LayoutManager

� long story...



BorderLayout

North

South

West EastCenter

Basics of programming 3 © BME IIT, Goldschmidt Balázs 25

� Five fields
� north, south, west, east, center

� Default layout for JFrames

� Resize in the arrows’ direction possible

� One field – one component

South



FlowLayout

� Default layout for JPanel

Puts components beside each other

C1 C3C2

Basics of programming 3 © BME IIT, Goldschmidt Balázs 26

� Puts components beside each other

� if there is no more place, starts new row

� Does not resize them individually

� Direction depends on container
� ComponentOrientation.LEFT_TO_RIGHT, 
RIGHT_TO_LEFT

� Alignment can be set:

� LEFT, RIGHT, CENTER, LEADING, TRAILING



CardLayout

� Components are placed below each other

� like a deck of cards

� one comoponent – one card

Basics of programming 3 © BME IIT, Goldschmidt Balázs 27

� Always the topmost is visible

� Deck can be reordered by methods of the 

managers

� Components can be named for faster access



GridLayout

C1 C2 C3 C4

C5 C6 C7 C8

Basics of programming 3 © BME IIT, Goldschmidt Balázs 28

� Components are put into an NxM grid

� Every component has the same size

� resize if needed

� Direction depends on the container

� LEFT_TO_RIGHT – RIGHT_TO_LEFT

� If number of rows is fixed, new columns can be added



GridBagLayout

C1 C2

C3

C5

C4

Basics of programming 3 © BME IIT, Goldschmidt Balázs 29

� Advanced variant of GridLayout

� Components can occupy more than one square

� GridBagConstraint specifies occupancy rules

C6 C7 C8



BoxLayout

� Vertical or horizontal placement of components

C1 C3C2

Basics of programming 3 © BME IIT, Goldschmidt Balázs 30

� Vertical or horizontal placement of components

� No new line when full

� Four kinds of directions
� X_AXIS – Y_AXIS: horizontal or vertical

� LINE_AXIS – PAGE_AXIS: considers also
ComponentOrientation



SpringLayout

Basics of programming 3 © BME IIT, Goldschmidt Balázs 31

� For flexible table-like layout

� Basically the connection between components’ 
edges must be defined

� Only for GUI builders (designers)
� hard to program manually 



GroupLayout

Basics of programming 3 © BME IIT, Goldschmidt Balázs 32

� Independent specification of horizontal and vertical 
dimensions
� each component is added twice

� Hierarchical: groups are placed into each other

� Sequential or parallel placement

� Replacing a component:
� void replace(Component oldc, Component newc)



GroupLayout (swing) 2

Basics of programming 3 © BME IIT, Goldschmidt Balázs 33

vertical

horizontal



GroupLayout (swing) 3

layout.setHorizontalGroup(layout.createSequentialGroup()
.addComponent(label)
.addGroup(layout.createParallelGroup(LEADING)

.addComponent(textField)

.addGroup(layout.createSequentialGroup()

Basics of programming 3 © BME IIT, Goldschmidt Balázs 34

.addGroup(layout.createParallelGroup(LEADING)
.addComponent(caseCheckBox)
.addComponent(wholeCheckBox))

.addGroup(layout.createParallelGroup(LEADING)
.addComponent(wrapCheckBox)
.addComponent(backCheckBox))))

.addGroup(layout.createParallelGroup(LEADING)
.addComponent(findButton)
.addComponent(cancelButton))

);



GroupLayout (swing) 4

layout.setVerticalGroup(layout.createSequentialGroup()
.addGroup(layout.createParallelGroup(BASELINE)

.addComponent(label)

.addComponent(textField)

.addComponent(findButton))

Basics of programming 3 © BME IIT, Goldschmidt Balázs 35

.addGroup(layout.createParallelGroup(LEADING)
.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(BASELINE)
.addComponent(caseCheckBox)
.addComponent(wrapCheckBox))

.addGroup(layout.createParallelGroup(BASELINE)
.addComponent(wholeCheckBox)
.addComponent(backCheckBox)))

.addComponent(cancelButton)))
);



Inner classes

� Defined within a class
� outside or inside methods

� as a parameter when calling a method (nasty!!!)

� No limit on nesting

36

� No limit on nesting

� Has access to members of nesting class
� methods

� final parameters and final local variables only

� Goal: encapsulation
� e.g. small helper class in a big one: Map – Map.Entry

Basics of programming 3 © BME IIT, Goldschmidt Balázs



Member class

� has a name

� can be accessed outside of nesting class 

� depending on visibility

� declared in class block (not inside a method)

Objektumorientált SW-tervezés © BME IIT, Goldschmidt Balázs 37

class In1 {
int k;
class In2 {int x = k;}

void bar() {

In2 i2 = new In2();

k = i2.x++;

}

}

...
In1 i1 = new In1();
i1.k++;
In1.In2 i3 = 

new In1().new In2();
...



Local class

� has name

� declared inside a block

� used in the block

public class Test { void bar() {

Objektumorientált SW-tervezés © BME IIT, Goldschmidt Balázs 38

public class Test {
int i = 10;
void xxx() { i++; }
void foo(final int a) {
class In1 {
int k = a;
int j = i;

void bar() {
k = i++;
xxx();

}
}
In1 i1 = new In1();
i1.j++;

}
}



Combined example

public class Test {
int i = 10;
void xxx() { i++; }
void foo(final int a) {
class In1 {
int k = a;

void bar() {
In2 i2 = new In2();
k = i2.z++;
xxx();

}

Objektumorientált SW-tervezés © BME IIT, Goldschmidt Balázs 39

int k = a;
int j = i;
class In2 {
int x = k;
int y = i;
int z = a;

}

}
In1 i1 = new In1();
i1.j++;
In1.In2 i3 = 
new In1().new In2();

}
}



Anonymous class

� never abstract, never static, always final

� has no declared constructor

public class MyFrame extends JFrame {
MyFrame() {
super("MyFrame");

Objektumorientált SW-tervezés © BME IIT, Goldschmidt Balázs 40

super("MyFrame");
addWindowListener(new WindowListener() {

public void windowClosing(WindowEvent e) {
System.ext(0);

}
... // other methods

}
);

}
}


